HYPERSURFACE OF A LORENTZIAN PARA-SASAKIAN **MANIFOLD**

Lakhan Singh*

Shailendra Kumar Gautam**

ABSTRACT

In this paper, we have studied the hypersurface of a Lorentzian parasasakian manifold. The non-vanishing condition for the scalar function λ on the hypersurface, has also been discussed.

Key words: Differentiable manifold, hypersurface, linear transformation field, immersion.

^{*} Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.)

^{**} Eshan College of Engineering, Mathura(UP)

1. INTRODUCTION:

Let M be an n-dimensional differentiable manifold. Let there exist a tensor field F of type (1,1), a vector field T, a 1-form A, a Riemannain metric G, s.t.

(1.1) (a)
$$F^2X = X + A X T$$

(b)
$$FT = 0$$

(c)
$$A T = -1$$

(d)
$$AoF = 0$$

(e)
$$G FX, FY = -G X, Y + A X A Y$$

(f)
$$A X = -G X, T$$

Let D be the Riemannian connexion on M, s.t.

(g)
$$D_X F Y = -G X, Y T + A X A Y T + \left[X + A X T\right] A Y$$

For all vector fields *X*, *Y* tangential to *M*, then *M* is called a Lorentzian para-sasakian manifold.

Let \overline{M} be the hypersurface of M. Let $b:\overline{M}\longrightarrow M$ be the immersion, i.e. $p\in \overline{M}\Rightarrow b$ $p\in M$.

$$B: T_p \ \overline{M} \longrightarrow T_{bp} \ M$$
, i.e. $X \in T_p \ \overline{M} \Rightarrow BX \in T_{bp} \ M$

B. is the differnetial of the immersion.

We have

(1.2) (a)
$$FBX = B\varphi X + \eta X C$$
,

(b)
$$FC = B\xi + \lambda C$$
.

Then $\,\phi,\xi,\eta,\lambda\,$ define respectively a linear transformation field, a vector field, a 1-form and a scalar function on $\,\overline{\!M}$. Here C denotes the unit normal vector to $\,\overline{\!M}$. Let g be the induced Riemannain metric on $\,\overline{\!M}$, then

$$(1.3) \quad G \quad BX, BY = g \quad X, Y$$

2. HYPERSURFACE IMMERSED IN A LPS MANIFOLD:

Theorem (2.1)

Define a vector field ξ^1 , a 1-form η^1 on $ar{M}$ as

(2.1) (a)
$$T = B\xi^1$$

(b)
$$A BX = \eta^1 X ,$$

then for hypersurface structure $\varphi, \xi, \xi^1 \eta, \eta^1, \lambda, g$

we have

(2.2) (a)
$$\varphi^2 X = X - \eta X \xi + \eta^1 X \xi^1$$

(b)
$$\eta \varphi X = -\lambda \eta X$$

(c)
$$\varphi \xi = -\lambda \xi$$

(d)
$$\eta \xi = 1 - \lambda^2$$

(e)
$$\eta \xi^1 = 0$$

(f)
$$\varphi \xi^1 = 0$$

(g)
$$\varphi^3 X - \varphi X = \lambda \eta X \xi$$

(h)
$$\eta^1 \xi = 0$$

(i)
$$g \varphi X, \varphi Y = -g X, Y - \eta X \eta Y + \eta^1 X \eta^1 Y$$

$$(j) \qquad \lambda^4 - \lambda^2 + 2 = 0$$

$$(k) \eta^1 \xi^1 = -1$$

Proof:

Operating F to both the sides of (1.2) (a),

(2.3)
$$F^2BX = FB \varphi X + \eta X FC$$

using (1.1) (a), (1.2) (a), (b) in (2.3)

(2.4)
$$BX + A BX T = B\varphi^2 X + \eta \varphi X C + \eta X B\xi + \lambda C$$
 using (2.1) (a), (b) in (2.4),

(2.5)
$$BX + \eta^1 X B\xi^1 = B[\varphi^2 X + \eta X \xi] + [\eta \varphi X + \lambda \eta X]C$$
 which gives

$$\varphi^2 X = X - \eta X \xi + \eta^1 X \xi^{-1}$$

and

$$\eta \varphi X = -\lambda \eta X$$

which are (2.2) (a) and (2.2) (b).

Operating F to both the sides of (1.2) (b)

(2.6)
$$F^2C = FB\xi + \lambda FC$$

using (1.1) (a), (1.2) (a), (b) in (2.6),

(2.7) C + A C $T = B\varphi\xi + \eta \xi C + \lambda B\xi + \lambda C$ as C is unit normal to \overline{M} \therefore from (1.1) (f), A(C)=0. Then (2.7) gives.

(2.8)
$$C = B \varphi \xi + \lambda \xi + \left[\eta \xi + \lambda^2 \right] C$$

Thus

$$\varphi \xi = -\lambda \xi$$

$$\eta \xi = 1 - \lambda^2$$

which are (2.2) (c) and (2.2) (d).

From (2.2) (b), we have

(2.9)
$$\eta \ \varphi^2 X = \lambda^2 \eta \ X$$

using (2.2) (a) in (2.9)

(2.10)
$$\eta \left[X - \eta \ X \ \xi + \eta^1 \ X \ \xi^1 \right] = \lambda^2 \eta \ X$$

(2.11)
$$\eta X - \eta X \eta \xi + \eta^1 X \eta \xi^1 = \lambda^2 \eta X$$

using (2.2) (d) in (2.11),

$$\eta X - \eta X \left[1 - \lambda^2\right] + \eta^1 X \eta \xi^1 = \lambda^2 \eta X$$

which gives

$$\eta \xi^1 = 0,$$

which is (2.2) (e).

From (1.1) (b), and (2.1) (a)

(2.12)
$$FB \xi^1 = 0$$

using (1.2) (a), (2.2) (e) in (2.12), we get

$$\varphi \xi^1 = 0$$

which is (2.2) (f)

From (2.2) (a), we have

using (2.2) (c), (2.2) (f) in (2.13),

$$\varphi^3 X - \varphi X = \lambda \eta X \xi$$

which is (2.2) (g)

Replacing *X* by ξ in (2.2) (a)

(2.14)
$$\varphi^2 \xi = \xi - \eta \xi \xi + \eta^1 \xi \xi^1$$

using (2.2) (c), (d) in (2.14),

(2.15)
$$\lambda^2 \xi = \xi - \left[1 - \lambda^2\right] \xi + \eta^1 \xi \xi^1$$

which gives

$$\eta^1 \xi = 0$$

which is (2.2) (h)

From (1.1) (e),

(2.16) G FBX, FBY = -G BX, BY + A BX A BY

using (1.2) (a) in (2.16)

- (2.17) G $B\varphi X + \eta$ X C, $B\varphi Y + \eta$ Y C = -G BX, BY +A BX A BY C being unit normal to \overline{M} .
- (2.18) $G B \varphi X, B \varphi Y + \eta X \eta Y = -G BX, BY + A BX A BY$ using (1.3), (2.1) (b) in (2.18)

$$g \varphi X, \varphi Y = -g X, Y - \eta X \eta Y + \eta^1 X \eta^1 Y$$

which is (2.2) (i)

From (2.2) (i), we have

(2.19) $g \varphi \xi, \varphi \xi = -g \xi, \xi - \eta \xi \eta \xi + \eta^1 \xi \eta^1 \xi$

using (2.2) (c), (d), (h) in (2.19), we get

$$\lambda^{2} = -1 - \left[1 - \lambda^{2}\right]^{2} = -2 - \lambda^{4} + 2\lambda^{2}$$

 $\lambda^4 - \lambda^2 + 2 = 0$ which is (2.2) (j).

Again from (2.2) (i)

 $(2.20) \ g \ \varphi \xi^{1}, \varphi \xi^{1} = -g \ \xi^{1}, \xi^{1} - \eta \ \xi^{1} \ \eta \ \xi^{1} + \eta^{1} \ \xi^{1} \ \eta^{1} \ \xi^{1}$

using (2.2) (f), (e) in (2.20)

$$0 = -1 + \left[\eta^1 \quad \xi^1 \quad \right]^2$$

$$\eta^1 \xi^1 = -1$$

which is (2.2) (k)

Theorem (2.2):

The vector field *FC* can not be tangential to \overline{M} or $\lambda \neq 0$.

Proof: from (1.2) (b)

(2.21)
$$g$$
 FC , $C = g$ $B\xi$, $C + \lambda g$ C , C

$$0 = 0 + \lambda$$

$$(2.22) \lambda = 0$$

From (2.2) (j) and (2.22), we get

(2.23) 2=0, which is an absurdity

Thus $\lambda \neq 0$.

REFERENCES:

- 1. Y. Tashiro, (1963): On contact structure of hypersurfaces in complex manifolds, Tohoku Math. Jour 15, 56-62.
- 2. K. Yano and M. Okumura, (1971): In variant hypersurfaces of a manifold with (f, g, u, v, λ) structure, Kodai Math. Sem. Rep. 23, 290-294.
- 3. S.I. Goldberg, (1968): Totally geodesic hypersurfaces of Kahler manifolds with positive definite Ricci tensor, Ann. of Math, 74, 570-574.

March 2016

IJESM Volume 5, Issue 1 **ISSN: 2320-0294**

4.	S. Yamaguchi (1971):	On complex hypersurfaces with
	()	vaniphing Bochner Curvature tensor in
		Kahlerian Manifolds, Tensor, 22, 77-81.
5.	S. I. Goldberg and K. Yano,	"Noninvariant hypersurfaces of almost
		contact manifolds," Journal of the
		Mathematical Society of Japan, vol. 22,
		no. 1, pp. 25–34, 1970.
6	Atindogbe, C.:	Scalar curvature on lightlike
		hypersurfaces. Appl. Sci. 11, 9-18 (2009).
7	Atindogbe, C., Duggal, K.L	Conformal screen on lightlike
	Turidogee, e., z uggar, Tuz	hypersurfaces. Int. J. Pure Appl. Math.
		11, 421–442 (2004).